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Abstract

The control of hydraulic cylinders with digital hy-
draulic valves is often based on modulation principles
like pulse-width-modulation, pulse-code-modulation or
pulse-frequency-control. In many cases the dynamic
drive performance using such control strategies is far
below the natural dynamics of the system, since closed
loop controllers demand a certain phase margin for sta-
bility. However, some drive applications require a high
dynamic response, which cannot be realized with com-
mon closed loop concepts. In this paper the design of a
bang-bang feedforward control with regard to the dy-
namics of a hydraulic cylinder drive in accordance with
the theory of optimal control is presented. The control
achieves the maximum physical dynamic response and
no remaining oscillations after the movement, which
forms the basis of a high dynamic three-level position
control for hydraulic drives. Furthermore, the influence
of valve dynamics and pipe line dynamics with regard
to the design of the digital valve control are considered
by simulations.

Keywords: digital, hydraulics, high dynamic, switch-
ing control

1 Introduction

In digital hydraulic drives simple on/off valves are
used for the control of the actuator. Due to their
simple design, digital valves are far less expen-
sive than proportional valves, or even servo valves.
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Furthermore, since digital valves have only two
switching states, either open or closed, such valves
are also more robust against oil contamination
compared to for instance servo valves. However, in
many cases unwanted vibrations are caused by the
switching of the valves, since inertial loads in com-
bination with the compressibility of the fluid result
in weakly damped oscillatory systems. Therefore,
certain switching strategies must be applied in or-
der to achieve the desired motion and, in turn, to
avoid the excitation of unwanted resonances. So
far, in hydraulics the following different methods
in digital valve control have been established:
In Pulse-Code-Modulation (PCM) the flow rate
for the intended motion of the drive is controlled
by different digital valves arranged in parallel and
often of different sizes. Thus, the flow through
the valve is coded by certain combinations of the
different valves (see, for instance, [1, 2, 3]). The
requirements on the switching times of the valves
do not play a significant role unless two or more
valves are intended to be switched at the same
time. In such a case a perfect synchronous switch-
ing of the valves is necessary in order to avoid pres-
sure fluctuations due to an undesirable effective
valve opening. A main advantage of this concept
is the reliability due to the parallel arrangement
of several valves, i.e. in case of one faulty valve
the drive is still able to operate at reduced per-
formance. Drawbacks of this method are the high
number of valves and the complicated program-
ming of the control unit, especially when fault de-
tection is implemented.
The concept of Pulse-Width-Modulation (PWM)
uses a constant frequency for the switching of the
digital valves. The mean flow rate through a valve
is controlled by the duty ratio between the on-
and offtime of the valve within the switching pe-
riod, see for instance [4, 5, 6, 7, 8]. Furthermore,
this method is often used in energetically efficient
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hydraulic step-down switching converters as pre-
sented in [9, 10, 11, 12]. Moreover, in [13] the
PWM switching strategy is used in a hydraulic
step-up converter in order to boost the load pres-
sure. However, in order to achieve a smooth move-
ment of the drive, the switching frequency is re-
quired to be much higher than the natural fre-
quency of the drive. Due to the limited switching
frequencies in hydraulics (see e.g. [14]) in some
cases the drive dynamics must be even slowed
down by gas-loaded attenuation devices, which in
turn results often in an unwanted soft hydraulic
drive system.
Another method in digital hydraulic valve control
is the so called Pulse-Frequency-Control (PFC).
The velocity of the drive is controlled by the fre-
quency of a well defined single flow pulse. Such a
pulse does not need to be produced by a digital
valve rather, for instance, by a magnetically actu-
ated piston pump. A basic study of this concept
for hydraulic systems can be found, for instance, in
[15]. The PFC is designed to the dynamics of the
drive in order to keep the unwanted oscillations
low. Therefore, the pulses must be produced in a
certain phase relation with regard to the natural
frequency of the drive.
In [16, 17] strategies for an optimal feedforward
control of digital hydraulic drives are presented.
The considerations were based on optimal control
theory, however, they were focused on numerical
investigations. Furthermore, due to the structure
of the models the resulting calculation effort for
the numeric analysis was quite high. Moreover, in
many cases the presented numeric control is not
realized by a strict digital valve opening, but by a
sort of proportional valve openings.
In this paper a simple analytical bang-bang con-
trol strategy named High Dynamic Digital Con-
trol (HDDC) for a hydraulic cylinder with a dead
load is presented, which results in the maximum
dynamic response and, moreover, minimizes re-
maining oscillations excited by the digital switch-
ing process. The control is designed with regard
to the natural frequency of the hydraulic drive in
order to achieve maximum acceleration and decel-
eration of the load. For this purpose the valves
are actuated in the correct phase angle of the rel-
evant natural frequency of the system, which re-
sults in the mentioned high dynamic response at
minimized remaining oscillations at the end of the

trajectory. In case of only one natural frequency
no resonances will remain after the intended move-
ment. Like in other mentioned literature, the de-
sign of the HDDC is based on optimal control the-
ory, in particular, on Pontryagin’s Maximum Prin-
ciple according to, e.g. [18]. In fact, the feedfor-
ward control derived in this paper leads to similar
results as from input-shaping techniques like, for
instance [19, 20], however, in contrast to the lastly
mentioned literature the considerations in this pa-
per give deep insight into the physics of digitally
actuated drives.

The paper is organized as follows: In Section 2
the modeling and the mathematical design of the
HDDC are considered. In Section 3 a number of
simulation results with regard to the basic operat-
ing principle of the HDDC are presented. Further-
more, advanced simulations regarding nonideal ef-
fects like valve switching times, pipe line dynam-
ics and friction are illustrated in the same section.
A comprehensive discussion is given in Section 4
and finally an outlook to future work is provided
in Section 5.

2 High Dynamic Digital Control

The digital valve control presented in the follow-
ing is a model based control, which needs knowl-
edge of the system dynamics. For this purpose
a mathematical model is necessary, which is pre-
sented in the following subsection. The concept of
the HDDC is a bang-bang control strategy based
on Pontryagin’s Minimum (Maximum) principle
according to optimal control theory.

2.1 Modelling

In this paper the design of the HDDC is focused
on a linear hydraulic drive according to Fig. 1.
In order to keep the calculations simple no pipe
line between the cylinder and the valves is con-
sidered and, furthermore, the cylinder is operated
in plunger mode, which means that the annulus
chamber is connected to supply pressure, perma-
nently. The resulting nonlinear differential equa-
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Fig. 1: Differential cylinder in plunger mode

tions read

ẋ = v

v̇ = 1
m

(pAA1 − pSA2 − dvv) (1)

ṗA = E

V0 + A1x
(−A1v + QV u)

with the states x and v for the piston’s position
and velocity and pA the pressure in the cylinder
chamber. The parameters are the dead load m,
the cross-section areas of the piston A1 and A2,
the fluid volume in the cylinder chamber V0 and
the modulus of compressibility of the fluid E. For
simplicity no additional load force and, further-
more, zero-gravity are considered, which results
in an equilibrium pressure pA = A2

A1
pS . Moreover,

the pressure fluctuations due to a rapid movement
of the dead load are assumed to be small, which
means that the ratio between the cross-section
area A1 and the dead load m is correspondingly
large. The input of the system is a digital flow rate
with QV = QN

√
∆p
pN

≈ const., and u ∈ [−γ, 0, 1].
The input u = 1 means that a supply sided dig-
ital valve is switched on. The parameter γ ≥ 0
represents an additional degree of freedom with
the meaning of a tank sided valve with a scaled
flow of γ with respect to the flow through the sup-
ply sided valve. Moreover, with the parameteriza-
tion γ different valve sizes and, moreover, different
pressure drops ∆p can be considered. From the
starting point of view the assumption of a con-
stant QV is justified, since a digital valve gains
a constant flow rate as far as the pressure drop
and, thus, the pressure in the cylinder is nearly
constant. On the one hand, this is fulfilled by the
assumptions of a large pressure drop at the valve
and, furthermore, of small pressure fluctuations
of pA due to the switching. On the other hand,
a constant supply pressure is required, which can-
not be assumed in general at fast valve switching

processes, since limited dynamics of the pressure
supply system must be expected. However, with
decoupling accumulators, which are installed close
to the supply sided ports of the switching valves,
unwanted fluctuations of the supply pressure can
be prevented.
The system (1) is nonlinear, which hinders a sim-
ple design of the HDDC. A numerical analysis is
not intended in the considerations because then
the insight to the dynamic behaviour of the sys-
tems is not clear. Thus, the nonlinear system
is linearized along a rest position. Furthermore,
the viscous damping coefficient dv is usually not
known for real drive systems. However, it is as-
sumed that in most cases the friction in the sys-
tem does not significantly influence the natural
frequency of the drive system. Thus, for simplic-
ity the friction is neglected in the design process.
In this case the control is designed to a completely
undamped system and in reality the actual friction
maintains a reduction of unwanted oscillations.
Furthermore, it is assumed that during acceler-
ation and deceleration the displacement volume
due to the piston movement is small, which leads
to VC = V0 + A1x ≈ const. With these assump-
tions the system (1) can be linearized to

ẋ =

 0 1 0
0 0 1

α
0 −β 0


︸ ︷︷ ︸

A

x +

 0
0
δ


︸ ︷︷ ︸

b

u (2)

with α = m
A1

, β = EA1
VC

and δ = EQV
VC

and
the state vector x =

[
∆x ∆v ∆pA

]⊺
=[

x1 x2 x3
]⊺

. The linearized system (2) is con-
trollable due to

rank ([b, A.b, A.A.b]) =

rank


 0 0 δ

α

0 δ
α 0

δ 0 −βδ
α


 = 3, (3)

has the eigenvalues ω1,2,3 =
[
0, ±

√
− β

α

]
and will

be used for the design of the HDDC as shown in
the following.

2.2 Optimal Control

The intention is to design a bang-bang control
in order to accelerate the drive according Fig. 1



2 High Dynamic Digital Control 4

within the shortest time T ⋆ from an equilibrium
point to maximum velocity, thus

x0 =
[

0 0 0
]⊺

and (4)

x (T ⋆) =
[

x1
δ
β 0

]⊺
(5)

with δ/β as the quotient of the input flow coeffi-
cient and the cross-section area of the piston, i.e.
the steady state velocity. Since the system (2) is
linear, it is clear that an exchange of initial and
end conditions leads to a control, which deceler-
ates the drive from steady state velocity to equi-
librium. This is also valid for the opposite moving
direction.
The analytic solution of the differential equa-
tion (2) reads

x1 =
√

α

β

sin
(√

β
α t

)
(βx20 − δu0)

β

−
cos

(√
β
α t

)
x30

√
αβ

+ x30 + δu0
β

+ x10

x2 =
sin
(√

β
α t

)
x30

√
αβ

+ (6)

cos
(√

β
α t

)
(βx20 − δu0)

β
+ δ

β
u0

x3 =
√

αβ

cos
(√

β
α t

)
x30

√
αβ

−
sin
(√

β
α t

)
(βx20 − δu0)

β


with the initial conditions x10, x20, x30 and the in-
put u0. According to the theory of optimal control
(see, for instance, [18]) the Hamiltonian follows to

H = 1 + λ⊺ (Ax + bu)

= 1 + λ1x2 + λ2x3
α

+ λ3 (−βx2 + δu) (7)

with the adjoint differential equations (λ̇⊺ =
−∂H

∂x )  λ̇1
λ̇2
λ̇3

 =

 0 0 0
−1 0 β
0 − 1

α 0


 λ1

λ2
λ3

 . (8)

The general solution of Eq. (8) calculates to

λ1 = C1

λ2 =
√

αβ

sin

√β

α
t

C2

− cos

√β

α
t

C3


λ3 = sin

√β

α
t

C3 + cos

√β

α
t

C2 + C1
β

.

With regard to theory the roots of the expression

σ = λ⊺b =
[

λ1 λ2 λ3
]

.

 0
0
δ


=

sin

√β

α
t

C3

+ cos

√β

α
t

C2 + C1
β

 δ (9)

represent the switching points of the optimal bang-
bang control. According to Eq. (5) the position
x1 (T ⋆) is free, which yields the condition for the
adjoint state variable

λ1 = C1 = 0. (10)

Consequently, the first switching point (σ (t1) =
0) calculates to

t1 = −
√

α

β
arctan

(
C3
C2

)
, (11)

which means that at t = 0 the input is set to
u = 1 and oil flows through the valve until the
switching point t1, where the valve is shut. Sub-
stituting the initial condition x0 and Eq. (11) into
the analytical solution Eq. (6) results in the initial
condition x (t1) for the second switching interval
t1 < t < t1 + t2.
Considering the control input u ∈ [−γ, 0, 1] with
γ ≥ 0 yields the next switching interval

t2 = T ⋆ − t1 = −
√

α

β
ϑ with (12)

ϑ = arctan

 C3

C2

(
γ

√
C2

3 +C2
2

C22
+
√

C2
3 +C2

2
C22

− 1
)

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Substituting Eq. (12) into the velocity equation
from (6) and, furthermore, using the end condition
x2 (T ⋆) = δ

β , then the relation for C3 follows to

C3 = −C2

√
4γ2 + 8γ + 3. (13)

Substituting now Eq. (13) into Eq. (11) and
Eq. (12) yields

t1 =
√

α

β
arctan

(√
4γ2 + 8γ + 3

)
(14)

t2 =
√

α

β
arctan

(√
4γ2 + 8γ + 3

2γ2 + 4γ + 1

)
, (15)

which means that the drive is accelerated to max-
imum speed with two switching incidents. Thus,
the resulting control reads

u =


1 0 < t ≤ t1

−γ t1 < t ≤ T ⋆

1 t > T ⋆.

(16)

As mentioned above, for a movement in the op-
posite direction the control (16) can be inverted
easily to u− = −u.

2.2.1 Push Strategy

In this case the input flow rate is restricted to the
interval u ∈ [0, 1], which means that no second
(tank sided) valve is used (γ = 0) for an extending
movement. Thus, the switching points according
to Eqs. (14) and (15) simplify to

t1 = t2 = π

3

√
α

β
(17)

In the first switching interval the digital valve is
opened for t1 and in the second switching interval
no further flow rate is supplied to the system, i.e.
all valves are closed since γ = 0. At T ⋆ = t1 + t2
the maximum velocity of the drive is reached and
from this time forward the digital “flow rate” is
switched on again in order to maintain maximum
steady state velocity of the drive. Since the condi-
tions for optimality require x3 (T ⋆) = 0, no pres-
sure pulsations remain in the system. It is re-
markable that in this case both switching times
are identical and depend only on the natural fre-
quency of the drive system. In contrast to that
the velocity and, thus, the minimum position step
are strongly related to the digital flow rate and,
thus, to the valve size.

2.2.2 Push-Pull Strategy

Extending the input range to u ∈ [−1, 0, 1], which
accounts for a tank sided valve with the flow ratio
γ = 1 with respect to the flow rate through the
supply sided valve, yields the following switching
points

t1 =
√

α

β
arctan

(√
15
)

and (18)

t2 =
√

α

β
arctan

(√
15
7

)
. (19)

Also in this case the points of switching only de-
pend on the eigenvalues of the drive system. Com-
pared to the push strategy the push-pull switch-
ing marginally lowers the response time T ⋆ of the
drive.

3 Simulations

The HDDC according to Eq. (16) was tested by
numerical simulations in Matlab/Simulink. The
simulation parameters of the configuration with
regard to Fig. 1 are related to a common hydraulic
cylinder drive and listed in Tab. 1. The input flow
rate QV is related to a valve with 5 ℓ/min nominal
flow rate at a pressure drop of 5 bar. The cross-
section ratio of the cylinder areas is approximately
one half, thus, the mean load pressure is half the
supply pressure. In this context the input flow
rate from Tab. 1 is justified for both digital valves.
In a first step the basic effect of the derived dig-
ital switching control is investigated by simula-
tions employing the linearized model, which was
used for the development of the HDDC. Later in
another section advanced simulation experiments
show the performance of the HDDC under more
realistic conditions with regard to switching time
of the valves, pipe line dynamics and friction.

3.1 Basic Simulation Experiments

In this section simulation results with the lin-
earized model according to Eq. (2) are presented in
order to demonstrate the basic performance of the
HDDC derived above. For comparison reasons no
friction is considered in the following simulations,
which is in fact not realistic, but the effectiveness
can be demonstrated more clearly.
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Parameter Value
cross section area of piston A1 = 532π

4 mm2

annulus cross section area A2 = (532−362)π

4 mm2

cylinder length lC = 0.5 m
dead mass m = 500 kg

initial piston position x0 = 0.25 m
piston sided dead volume V0A =

(
0.1e−3 + A1x0

)
m3

annulus sided dead volume V0B =
(
0.1e−3 + A2 (lC − x0)

)
m3

bulk modulus of the fluid E = 1.2e9 N
m2

supply pressure pS = 200 bar
input flow rate QV = 5

√
100
5

ℓ
min

Tab. 1: System parameters

3.1.1 Push Strategy

In Fig. 2 the simulation results of the HDDC ac-
cording to Eq. (17) and a single pulse control
are compared. In Fig. 2a an exemplary ramp
movement is depicted, where after acceleration the
drive moves at steady state velocity for a certain
distance and then decelerates with the inverted
switching pattern.
In Fig. 2b the minimum step is illustrated, where
the acceleration pattern is directly followed by the
deceleration pattern. In both cases the input sig-
nals, of the HDDC and of the single pulse con-
trol, correspond to the same displacement volume
of the drive. It can be seen that with the single
pulse control large resonances are excited because
no drive dynamics and are considered.
With the HDDC a certain minimum step size can
be performed. Smaller steps can be realized with
the double pulse strategy as presented, for in-
stance, in [15]. In Fig. 3 the minimum HDDC
step is opposed with a smaller step according to
the double pulse concept. Combining both con-
cepts, the HDDC and the double pulse strategy,
result in arbitrary step sizes. Valve dynamics do
not limit the minimum step size, since a double
pulse movement can be also realized properly in a
ballistic valve operation.

3.1.2 Push-Pull Strategy

In Fig. 4 the push and the push-pull strategy
are opposed. The push-pull strategy achieves a
slightly lower minimum step size due to the larger
range of the control input. However, the differ-

ence is only marginal, since the response depends
strongly on the dynamics of the drive.

3.1.3 Pulse Frequency Modulation

Basically, the HDDC is designed to accelerate the
drive to maximum velocity and vice versa. If
the acceleration pattern is immediately followed
by the corresponding pattern for braking, then
the minimum step size is achieved. In order to
control a stepwise movement with a quasi mean
velocity a certain sequence of individual velocity
pulses must be generated. Here, only the push
strategy is presented. In Fig. 5a simulation re-
sults of a frequency modulated velocity (FM) is
depicted, where a sequence of several minimum
position steps are commanded at different frequen-
cies, which result in different mean velocities v.
The maximum quasi mean velocity, respectively,
the maximum frequency is limited to fF M

max = 1
2T ⋆ .

At higher pulse frequencies the control signals
of the individual pulses would overlap, which is
not intended here. Higher quasi mean velocities
than with pure FM can be achieved by an addi-
tional variation of the pulse width, like depicted
in Fig. 5b, which results in a Pulse-Frequency-
Modulation (PFM). The maximum velocity is rep-
resented by u = 1 = const, which is limited by the
valve size and the operating pressure.

3.2 Advanced Simulations

In this section the influence of certain non-ideal
effects on the system behavior are considered in
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the simulations. With regard to a stepwise in-
crease of complexity the simulations of the first
non-ideal effect, the switching dynamics of real
valves, are still carried out with the simple lin-
earized model. Later on, the dynamics of a single
pipe line are considered, additionally. The pipe
model is based on a linear method of characteris-
tics incorporating linear wave propagation effects
in the transmission line according to [21, 22]. In
a last step, simulations with the nonlinear model
according to Eq. (1) incorporating a pipe line,
switching dynamics and square root characteris-
tics of the valves and friction are presented.

3.2.1 Influence of the Switching Time of the
Valve

Real digital hydraulic valves do not switch instan-
taneously due to electronic delay, solenoid current
build up and the inertia of the spool or poppet,
thus, valves have a certain switching characteris-
tics. Since the HDDC is an open loop concept
a certain delay characteristics can be anticipated
by the control algorithm. In this contribution the
switching dynamics of the digital valves is mod-
eled by a limited slope of the valve opening. In
Fig. 6a the influence of two different valve switch-
ing times tr on the drive response is shown. If the
switching time of the valve is lower than the nec-
essary pulse width required by the HDDC (in this
case tr = 5 ms < t1 = 6.4 ms), then the control
seems to work properly, since no significant pul-
sations occur in the response. At larger switching
times (in this example tr = 10 ms > t1 = 6.4 ms)
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Fig. 4: Comparison of push and push-pull strategy

the HDDC is not able to completely compensate
the drive dynamics anymore. The reason for this
behavior is not investigated in detail in this contri-
bution, however, this effect may be caused by an
unsymmetrical partitioning of the energy for ac-
celeration and freewheeling. In this specific case a
correction of the switching times according to

t̃1 = 1
2

(1
2T ⋆ + tr

)
(20)

t̃2 = 1
2T ⋆ (21)

with the valve switching time tr leads to a signif-
icant improvement of the system performance in
case of large switching times, as shown in Fig. 6b.
In this study symmetric switching characteristics
are considered, which means that rise time and fall
time are identical. But this cannot be expected
in general. Therefore, in real applications the
switching times t̃1 and t̃2 must be identified. Fur-
thermore, due to wear of components over their
life span an ongoing optimization of the switching
times t̃1 and t̃2 must be expected.

3.2.2 Pipe Line Dynamics

In most linear drive applications the switching
valves are not directly situated at the actuator,
rather they are connected via pipes, like depicted
in Fig. 7. According to expected wave propagation
effects in the fluid due to the switching process
the dynamics of transmission lines are addition-
ally considered in the design of the HDDC. The
model[

pj

qj

]
=[

cosh (ζlP ) Z (s) sinh (ζlP )
− 1

Z(s) sinh (ζlP ) cosh (ζlP )

] [
pi

qi

]
(22)

according to [23] with the pipe impedance Z (s),
the pipe length lP and the frequency dependent
wave coefficient ζ is often used for the considera-
tion of linear wave propagation effects in transmis-
sion lines. With this model the pipe line dynamics
can be efficiently calculated in frequency domain.
After a suitable transformation of the model from
Eq. (22) the pipe line dynamics can be easily con-
sidered in the state space representation of the
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(a) Frequency-Modulation (b) Pulse-Frequency-Modulation

Fig. 5: Velocity control
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Fig. 6: Influence of the switching times of the valves
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Fig. 8: Transfer function according to Eq. (24) for
2 different pipe lengths

linearized cylinder model of Eq. (2) in frequency
domain, which results in

s

 x̂
v̂

p̂A

 =

 0 1 0
0 0 A1

m

0 −EA1
VC

− E sinh(ζlP )
VCZ cosh(ζlP )


 x̂

v̂
p̂A



+

 0
0
E

VC cosh(ζlP )

 q̂ (s) . (23)

Thus, the transfer function of the position of the
dead load according to the input flow rate reads

G (s) = x̂ (s)
q̂ (s) =

EA1

s
((

s2VCm + EA2
1
)

cosh (ζlP ) + sEm
Z sinh (ζlP )

)
(24)

which is depicted in Fig. 8. The system parame-
ters are the same as before according to Tab. 1.
Furthermore, a pipe with 2 m in length and an in-
ner diameter of dp = 20 mm is considered. Due to

the pipe dynamics the transfer function has sev-
eral natural frequencies. The first resonance at
approximately 20 Hz represents the dynamics of
the hydro-mechanic spring mass oscillator incor-
porating the dead mass and the oil stiffness in the
piston sided cylinder chamber. The higher reso-
nances are caused by the pipe line. The HDDC
is designed to the first natural frequency of the
transfer function from Fig. 8, because it is the
dominant resonance peak (> 0 dB), which is in-
tended to be compensated. All other eigenvalues
are not considered in the design of the HDDC.
However, it is not sufficient to completely neglect
the pipe line in the transfer function, because also
the dominant natural frequency of the spring mass
oscillator is somewhat influenced by the pipe line
dynamics.

In Fig. 9 simulation results of the drive responses
for different movements are depicted. In this
case the nonlinear cylinder dynamics according to
Eq. (1) incorporating the mentioned pipe line were
simulated. Furthermore, a valve switching time of
tr = 5 ms was considered. The simulation results
show that the digital valve control designed to the
relevant natural frequency lead to a satisfying per-
formance. Resonances of higher order do not play
a significant role, at least in this case. On the one
hand, this kind of robustness can be explained by
the fact that all higher resonances show a signifi-
cant lower peak than the design frequency. On the
other hand, the limited switching dynamics of the
digital valve even impedes a noticeable excitation
of the higher resonances of the pipe line. The in-
fluence of the pipe line dynamics can be observed
at the pressure signals. In the next to the lowest
diagrams of Fig. 9 the two pressure signals indi-
cate the pressure in the cylinder and at the valve.
The end of the pipe, which is connected to the
cylinder, has a pressure boundary with respect to
the cylinder pressure. The other end of the pipe is
connected to the valve, where the pressure shows
fluctuations with a higher frequency, which were
excited by the switching process. The observed
frequency of approximately 150 Hz can be found
as the second resonance peak of the system with
the 2 meters pipe in the frequency plot of Fig. 8.
Due to the mode shape of this resonance the pres-
sure fluctuations have their maximum at the valve
and their minimum in the cylinder. Thus, they do
not influence the velocity response, significantly.
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Fig. 9: System responses considering a pipe line of
2 meters in length

All higher resonances do not show up in the re-
sults of Fig. 9 due to the limited excitation band
width.
The design of the HDDC is related to the first nat-
ural frequency of the system, which is sufficient
for many hydraulic drive applications, since the
switching dynamics of the digital valves represent
a reduced excitation of higher resonances. In the
presented case of the push strategy, the ON and
OFF switching times of the HDDC are identical,
as shown in Eq. (17). Thus, the desired time do-
main input (flow rate) signal has a high spectral
content at the frequency ω̃ = 3

√
β
α . Thus, the

second natural frequency of the system must have
a significant distance to ω̃ in order to avoid un-
wanted vibrations. In the particular case the pipe
line between the valve and the cylinder must not
have its first resonance peak in the range of the
triple design frequency, which is a restriction for
the dimension of the used transmission line. In or-
der to demonstrate this effect, simulation results
of a system with an uncritical and, respectively,
with a critical pipe length are opposed in Fig. 10.
The simulation results show large fluctuations in
pressure and velocity due to the resonance peak
of the longer pipe (5.5 m) at the critical frequency
ω̃ = 3

√
β
α according to the frequency plot from

Fig. 8.

3.2.3 Friction

The digital valve control according to Eq. (16)
is developed completely without damping, which
made the derivation much more easier. How-
ever, in reality considerable friction must be ex-
pected. For the simulation experiments presented
in the following a static friction model according
to Fig. 11a was used, including a stick-slip effect.
The parameters of the friction model were approx-
imated in accordance with a real test bench of an
identical dimension. Furthermore, in the simula-
tions the square root characteristics of the switch-
ing valves with a nominal size of QN ≈ 5 ℓ

min@5bar
were considered. The results are depicted in
Fig. 11b, where the red curve shows the response
due to a single pulse actuation and the blue curve
the performance with regard to the derived dig-
ital valve control according to Eq. (17). It can
be seen that with the presented digital valve ac-
tuation a significant reduction of the resonances
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Fig. 10: Influence of pipe dynamics

can be achieved. The performance can be even
improved if the switching events t1 and t2 are cor-
rected within a few tenths of a millisecond by op-
timization. Such a result is shown by the yellow
curve, however, the optimizing process is out of
the scope of this article. Depending on the desired
accuracy, nonlinear friction effects like stick-slip,
dry friction and the Stribeck effect seem to play
an inferior role in such a weakly damped hydraulic
drive system, since an adaption of the switching
times in the range of a few milliseconds is suffi-
cient to compensate the deviation resulting from
friction. In this case the resulting acceleration due
to the rapid valve switching overrides the stick-slip
effect and, furthermore, the occurrent friction does
not significantly influence the resonance effect at
the dominating natural frequency of the drive sys-
tem. However, since only one specific drive con-
figuration was investigated by simulation, further
work must be devoted to this issue.

4 Discussion

The HDDC represents certain switching patterns
in order to accelerate and decelerate the drive sys-
tem. If the ON-pattern is directly followed by the

OFF-pattern the minimum position step is per-
formed. For smaller steps the method coincides
with the double pulse strategy according to liter-
ature, as for instance in [15]. The minimum steps
can be realized arbitrary consecutively, which rep-
resents a sort of stepper drive. The step size
depends on the size of the switching valve and
on the load pressure. Furthermore, if the OFF-
pattern is delayed for a certain time arbitrary
large steps at maximum velocity can be achieved.
Thus, the steps size and the step frequency can
be controlled, which results in a Pulse-Frequency-
Modulation (PFM) for digital hydraulic drives.
Actually, the HDDC is an open loop concept, how-
ever, it is simple to realize a closed loop three-
level controller for the piston position. Further-
more, if the necessary distance for deceleration is
anticipated, then a remarkable accuracy can be
achieved. In such a case the natural frequency
must be known in every desired target position,
since the dynamics of the drive depends on the
position of the piston.
For a proper operation of the HDDC the used dig-
ital valves have to meet certain requirements on
their minimum switching time. In case of slower
valves a correction of the switching patterns can
be done in order to achieve the most intended ef-
fect on the drive’s response. It must be expected
that due to wear effects on real applications the
switching pattern must be corrected also during
operation in order to achieve the desired behavior
over the life span of the drive system.
In fact, the achievable accuracy strongly depends
on the dynamics of the switching valves, but also
on the sampling rate of the signal processing unit,
where the controller is implemented. Since the
first natural frequency of some realistic hydraulic
drive systems can go up to the order of 100 Hz,
the characteristic switching signals must be per-
formed in the range of a few milliseconds. Thus,
for an optimal drive performance the switching
events must be timed within some tenths of a mil-
lisecond, which only can be achieved with a sig-
nal processing unit running on a sufficiently small
sample time.
So far, no variations of the dead mass and the load
force were considered in the investigations. On the
one hand it is clear that the dead mass m has sig-
nificant influence on the drive’s natural frequency
ω =

√
β
α =

√
EA1
mx . Thus, in case of different dead
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Fig. 11: Simulations considering valve characteristics, pipe line dynamics and friction

loads the mass must be either known or somehow
identified. On the other hand unknown constant
load forces are expected to have no significant in-
fluence on the desired response, since they only
result in a different mean pressure in the chamber
of a single actuated cylinder. However, variations
of the load force seem to be critical during the ac-
celeration and deceleration phase. Since the load
force is often a result from the interaction with a
dynamic load system, a constant load force cannot
be assumed a priori. Thus, variations of the load
will represent a major topic in further investiga-
tions.

The HDDC represents a bang-bang control for a
class of digital hydraulic systems, in particular,
single chamber actuated drives. Since the control
is designed to the transfer function of the com-
plete system comprising the inertia of the dead
load, the compressibility of the fluid in the cylin-
der chambers and the pipe line dynamics. In real
applications the necessary transfer function must
be identified by simple measurements or may be
approximated already in the design process. Ba-
sically, the application of the HDDC is not re-

J

pS

ϕ, ω

ML

pS

Fig. 12: Rotary hydraulic drive qualified for an
HDDC in both moving directions

stricted to cylinder drives and, thus, can be also
employed for rotary drives like, for instance, de-
picted in Fig. 12.

5 Conclusion and Outlook

The presented HDDC is an open loop concept,
which is designed to the dynamics of the drive
system. With the HDDC the maximum physical
dynamic response of the hydraulic drive can be
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achieved and unwanted resonances can be reduced
to a minimum. If the digital hydraulic drive sys-
tem has only one eigenfrequency no oscillations re-
main after the intended movement. Furthermore,
with the HDDC a sort of step control can be real-
ized, which may be qualified for a position control
without any position sensor for certain applica-
tions. The step size depends on the size of the used
digital valves and, furthermore, on the load pres-
sure. However, an operation without any position
sensor requires at least knowledge of the load con-
ditions. It must be expected that an ideal switch-
ing cannot be realized in real applications. There-
fore, the switching pattern must be optimized dur-
ing operation in order to achieve the desired per-
formance. Future work will focus on testing the
presented HDDC on a real drive system, where
also the robustness with regard to different load
conditions will be investigated.
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Nomenclature

A dynamic matrix

b input vector

C constant

G(s) transfer function

H Hamiltonian

λ adjoint state variables

λ adjoint state vector

s laplace variable

σ switching function

u control input

x state vector

α auxiliary variable

β auxiliary variable

δ auxiliary variable

γ scaled valve size . . . . . . . . . . . . . . . . . . . . . . . . . . [1]

ω eigen values

∆p pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . [Pa]

ζ wave propagation coefficient . . . . . . . . . . . . [1/m]

A1 cross-section area of piston . . . . . . . . . . . . [m2]

A2 annulus cross-section area . . . . . . . . . . . . . [m2]

dv viscous friction . . . . . . . . . . . . . . . . . . . . . . . [Ns/m]

E fluid compressibility . . . . . . . . . . . . . . . . . . . . [Pa]

f frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1/s]

lC cylinder length . . . . . . . . . . . . . . . . . . . . . . . . . . [m]

m dead mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg]

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Pa]

pA load pressure . . . . . . . . . . . . . . . . . . . . . . . . . . [Pa]

pN nominal pressure drop . . . . . . . . . . . . . . . . . [Pa]

pS supply pressure . . . . . . . . . . . . . . . . . . . . . . . . [Pa]

q flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m3/s]

QN nominal flow rate . . . . . . . . . . . . . . . . . . . . [m3/s]

QV flow rate through valve . . . . . . . . . . . . . . [m3/s]

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s]

tr valve switching time . . . . . . . . . . . . . . . . . . . . . . [s]

T ⋆ optimal time . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s]

v velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

V0 dead volume . . . . . . . . . . . . . . . . . . . . . . . . . . . [m3]

x position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]

Z pipe impedance . . . . . . . . . . . . . . . . . . . . . . . . [ kg
m4s

]
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